Меню

Как выглядит кот будущего

Как будут выглядеть коты в будущем

Удивительные факты о кошках
Ольга Флорес, 2020

Кошки считаются самыми популярными домашними животными. Они стали спутниками человека более 10000 лет назад. Сегодня эти чудесные, милые зверушки дарят нам радость, поднимают настроение и даже могут лечить. Но сколько еще загадок скрывают наши хвостатые питомцы! Например, не многие опекуны знают, что их любимый кот – хищник. Почему кошки любят больше наших друзей, как выглядит окружающий мир глазами кошки, какие запахи они ненавидят, могут ли предсказывать будущее и на самом ли деле кошки видят духов? Как думает кот? Может ли он узнать себя в зеркале? Ответы на эти и многие другие вопросы можно найти в этой книге.

Оглавление

Приведённый ознакомительный фрагмент книги Удивительные факты о кошках предоставлен нашим книжным партнёром — компанией ЛитРес.

Могут ли кошки предсказывать будущее?

Многие говорят, что кошки существуют на границе между реальным миром и магией. Более того, есть те, кто считает, что они могут предсказывать будущее. Верно или нет, давайте посмотрим на некоторые конкретные странные случаи.

Необыкновенным способностям Оскара пытались дать логическое объяснение, будто он способен ощущать определенные биохимические вещества, высвобождаемые из умирающих клеток. Пять других кошек живут в том же доме престарелых. Никто из них не может сделать то, что делает Оскар.

Умирающие кошки часто ищут изолированные места, чтобы остаться со смертью один на один. Есть также те, кто, ожидая, что это время “Х” настало, прощается со своими опекунами, обходит всю квартиру.

По крайней мере, несколько случаев известны и хорошо задокументированы, когда кошка выполняла роль конкретного живого сейсмографа. Свидетели рассказали, как за несколько дней до землетрясения кошки становились беспокойными, дрожали без причины и как раз перед катастрофой — убегали в панике из дома.

Когда вулканическая лава накрыла Помпеи, спустя столетия оказалось, что в руинах города не было найдено ни одного скелета кошки. Все они бежали из города еще до начала катастрофы.

В 1902 году на Мартинике вспыхнул вулкан, погибли десятки тысяч людей и только один кот.

В 2004 году у побережья Индонезии и Тайланда все кошки сбежали еще до цунами. Похожая ситуация наблюдалась во время землетрясений в Лос-Анджелесе.

Возможное объяснение — кошки могут ощутить с помощью усов и чувствительных волос на подушечках лап малейшие колебания земной коры и изменения ее магнитного поля.

Крестьяне, живущие на склонах Этны, доверяли кошачьей интуиции. Они держали кошек в своих домах не для того, чтобы ловить мышей, а чтобы предупредить их об извержении вулкана.

Возможно, вы знаете из собственных наблюдений — когда приближаются морозы, кошка становится ленивой, дольше спит, свернувшись калачиком, не желая двигаться.

Прежде чем температура поднимется выше нуля градусов по Цельсию, кошка становится активной. Она все больше хочет двигаться, играть, требовать, чтобы ее выпустили на балкон или на улицу. Начинается весенняя смена настроения.

БудущееКакими будут домашние животные будущего

Как развитие науки и технологий может повлиять на наших питомцев

В то время как технологии идут семимильным шагами вперёд, стоит задуматься о том, какое влияние они окажут на наших питомцев. Возможно, человечество вовсе откажется от концепции приручения животных, а привычные котики и собачки будут заменены роботами наподобие Aibo или Pleo. Может быть, в будущем, благодаря генетическим изменениям, мы сможем завести дома мини-носорога или даже аквариумного кита? В этом материале мы решили разобраться с возможными сценариями развития будущего наших домашних животных.

Точно неизвестно, сколько тысяч лет назад человек решил укротить животное и превратить его в своего друга и помощника. Поначалу это был довольно непростой альянс, в котором не было места для нежных ласк и взаимного обожания. Чтобы представить, во что он вылился сейчас, достаточно посмотреть на индустрию товаров для домашних животных, которая только в США оценивается в несколько миллиардов долларов.

Технологии заменили утилитарную функцию наших питомцев — нечасто встретишь кота, который помогает избавиться от грызунов, или собаку, охраняющую дом или охотящуюся на уток. Вместо этого они стали полноценными членами семей, а главной причиной, по которой люди заводят домашних животных, — это общение, которое они дарят человеку. Современные технологии позволили также создать максимально комфортную среду для питомцев. Но какое место они будут занимать в будущем? Большинство экспертов сходятся во мнении, что кибернетические питомцы 2.0 вряд ли выместят живых созданий. Собаки и кошки были одомашнены не по своей воле, и одно можно сказать наверняка — они никуда не денутся.

Почему люди любят
своих питомцев?

Игра с домашним животным провоцирует выброс гормона окситоцина, который, по предположениям учёных, вызывает более благожелательное расположение к окружающим. Он же участвует в формировании романтических чувств и отношений мать — ребёнок. Общение с животными снижает уровень стресса и даже содержание холестерина, нормализует кровяное давление.

По статистике 62 % американских семей имеют не менее одного животного (по сравнению с 56 % в 1988 году). 37,2 % семей владеют собаками и 32,4 % — кошками. В России зверей дома держат 76 % жителей: чаще всего это, разумеется, кошка (37 %) и собака (30 %). Основываясь на текущих тенденциях, повсеместная любовь и привязанность к братьям нашим меньшим в будущем будет только расти.

Союз человека и питомца является одним из фундаментальных для человеческого бытия. Один из самых очевидных вариантов его эволюции — появление всё большего количества роботов, которые менее прихотливы, чем наши Васьки, Марсики и Тишки. Уже сейчас есть масса впечатляющих примеров.

Питомцы-роботы

Один из них — робот-динозавр Pleo, созданный американской компанией Ugobe. Он имитирует своим видом детёныша Камаразавра недельного возраста. Разработчиком Pleo является Калеб Чанг, один из создателей интерактивной игрушки Furby. По заявлениям представителей Ugobe, каждый Pleo «учится», основываясь на событиях, происходящих в окружающем его мире. Сложный «искусственный интеллект» даёт возможность формировать уникальную индивидуальность каждому отдельно взятому роботу Pleo.

Другой хороший пример — японский робот-белёк Паро. Интерактивное устройство, имитирующее детёныша тюленя, реагирует на действия людей: если его погладить или похвалить, он выразит своё удовольствие, если ударить — испугается. Благодаря пяти датчикам, реагирующим на температуру, прикосновения, свет, голос и положение окружающих объектов, белёк ведёт себя как живой. Выбор именно этого животного в качестве прототипа игрушки неслучаен — белёк по праву может считаться одним из самых умилительных существ.

В отличие от Плео, Паро вовсе не простая игрушка — робот помогает лечить возрастных пациентов. Общение с ним помогает снизить давление, риск инфаркта, инсульта и диабета, повысить общую сопротивляемость организма и улучшить настроение, что особенно важно для пожилых больных. В отличие от живых кошек и собак, Паро не переносит бактерии, не вызывает аллергии, не может никого поцарапать или укусить. Желание потискать игрушку, прижать её к себе помогает вернуть интерес к жизни и вызвать положительные чувства у пожилых людей, подолгу пребывающих в больницах.

Компания Falkor Systems разрабатывает интеллектуальные беспилотники, которые способны следовать за человеком, фотографировать и отправлять снимки в соцсети. В некотором смысле прототип Pet AR.Drone, использующий алгоритмы искусственного интеллекта и автоматически отслеживающий своего хозяина с безопасного расстояния, можно считать полноценным питомцем. Его создатель Самир Парех заявляет, что беспилотники могут быть использованы для личной безопасности: например, когда вы идёте по тёмному переулку и вас пытаются ограбить, дрон сможет вызвать полицию. Парех также говорит, что однажды каждый человек будет иметь свой ​​собственный беспилотник, который будет действовать как личный помощник или питомец.

Будущие поколения интерактивных роботов-питомцев могут обзавестись более реалистичным внешним видом, симуляцией тепла тела и более совершенным искусственным интеллектом. Впечатляют уже существующие разработки Boston Dynamics, чьи роботы Legged Squad Support System и CHEETAH двигаются с завораживающей грациозностью и быстротой. В первую очередь они разрабатываются для того, чтобы, например, вынести тело раненого из эпицентра боевых действий по косогору, но несложно представить, как на их базе можно создать милого и игривого робота-ретривера, который будет резвиться с детьми на лужайке. Такой питомец сможет отправиться за хозяином куда угодно: будь то поход в Гималаи или пикник на песчаных барханах в пустыне. Помимо того что подобная робособака поможет донести ваш рюкзак, встроенный в GPS датчик превратит её в отличного проводника, который доведёт до места назначения.

Робот-животное будет иметь массу очевидных преимуществ по сравнению с живыми питомцами. Его не придётся регулярно выгуливать, кормить или убирать за ним. Кроме того, робота можно без проблем взять с собой, например, на борт самолёта (это, кстати, может помочь справиться с аэрофобией, — как говорилось выше, роботы-питомцы снижают уровень стресса).

Как показало исследование, настоящие собаки вполне могут «подружиться» с роботами. Если машина запрограммирована на то, чтобы реагировать на животное, в ответ оно проявляет позитивный интерес. Вероятно, в будущем роботы смогут скрасить одиночество живых питомцев, пока хозяин находится на работе.

Кошки видят будущее?

Во время второй мировой войны радарные установки на южном по­бережье Англии контролировали воздушное пространство Франции для предупреждения налетов наци­стских бомбардировщиков, а тем временем акустические посты и опытные «слухачи» зондировали небеса в поисках признаков и зву­ков, означающих, что готовится налет с противной стороны. Однако многие жители быстро об­наружили, что гораздо более на­дежная и чувствительная система раннего предупреждения опасности лежит, свернувшись клубком, у их теплого камина.

Во время войны эта способность предсказывать будущее оказалось настолько жизненно ценной, что была учреждена специальная ме­даль с выгравированными на ней словами «Мы тоже служим родине». Медаль вручалась кошкам, чьи дей­ствия помогли спасти человеческие жизни. К сожалению, мы не располагаем материалами о поведе­нии кошек во время бомбежек на­ших городов во время Великой Оте­чественной войны. Будем рады пол­учить воспоминания очевидцев.

Черно-белая кошка по кличке Сэлли, жившая поблизости от лон­донских доков, разработала слож­ную систему оповещения, после ко­торой ее хозяин и соседи мчались в бомбоубежище до того, как начина­ли падать бомбы. Чувствуя, что на­лет близок, Сэлли бежала к стойке в холле, где висел противогаз, и на­чинала настойчиво колотить его передними лапами, после чего возвращалась к своей хозяйке и принималась ее царапать. Затем она мчалась во двор и начинала царапаться в дверь бомбоубежища. Однажды, когда хозяйка вошла в убежище, Сэлли перемахнула через изгородь, забежала во двор к соседям и начала громко мяукать, привлекая их внимание. Только когда все трое оказались в бомбоу­бежище, Сэлли расслабилась, свернулась клубочком и мирно за­снула.

Кошки-мамы использовали свои провидческие способности, чтобы обеспечить безопасность котят. Женщина, которая годы войны провела в Плимуте, рассказала, как очень задолго до воя сирен ее кошка осторожно брала каждого котенка и по очереди переносила из корзинки в большую комнату, под прикрытие массивного потолка.

Впрочем, необходимо признать, что далеко не все кошки использо­вали свои способности столь бла­городным образом.

Одна семья в Суссексе была чрезвычайно изумлена, когда их кот Тимоти отказался следовать за ними в убежище после того, как сирены предупредили о масси­рованном воздушном налете. Одна­ко когда прозвучал сигнал отбоя, причина его отсутствия стала по­нятной. Кот, обычно сидевший на диете из дешевой рыбы, обнаружил, что семья, торопясь в убежище, ос­тавила на столе четыре нетронутых обеда. Возможно, Тимоти наперед знал, что ни он сам, ни дом не по­двергнутся никакой опасности, по­скольку, презрев убежище, он ос­тался в доме и предался чревоуго­дию!

Эти военные истории являются драматической иллюстрацией спо­собности кошек предсказывать бу­дущее и предвидеть опасность, причем ни один из способов не под­дается сколь-нибудь рациональ­ному объяснению. Однако на самом деле существуют достаточно убеди­тельные теории для объяснения многих, если не всех, их способно­стей к предвидению. Впрочем, ни одна из них не делает кошку менее выдающимся существом или менее полезным человеку помощником. Потому что, как мы уже убедились, кошка часто использует свои сверхъестественные провидческие способности для спасения человече­ской жизни. Иногда они предвидят событие задолго до его наступле­ния, будь то природный катаклизм или серьезный инцидент. Однако, чаще всего их предвидения стано­вятся более «земными» и касаются более тривиальных событий, таких, как, например, смена погоды или прибытие неожиданного гостя. В са­мом деле, если вы знаете, чего ждать, и способны распознать изме­нения в поведении кошки, которые можно было бы рассматривать как провидческие, вы сможете исполь­зовать вашу кошку как волшебный хрустальный шар и, возможно, предотвратить некоторые неприятности, надвигающиеся на вашу семью.

Кошки и гены: 40 лет спустя

На Земле живет полмиллиарда домашних кошек. Они ловят мышей, украшают жизнь своим хозяевам, воюют с собаками и голубями и служат … замечательным объектом для генетических исследований. В этой статье специалисты-генетики рассказывают о современных взглядах на устройство, функционирование и эволюцию кошачьего генома и обсуждают перспективы развития генетики кошки на ближайшие десять лет

П. М. Бородин: краткое содержание предыдущих серий

Ровно 40 лет назад я опубликовал в журнале «Химия и жизнь» первую статью про генетику кошек. В ней я убеждал читателя, что всю прелесть генетики и ее законов можно увидеть не на горохе, не на дрозофиле, а именно на кошке.

В то время генетика кошки сводилась в основном к описанию красочных фенотипов и их наследования. В принципе, этого было достаточно для выведения и поддержания пород и проведения геногеографических исследований. Позже выяснилось, что некоторые тогдашние гипотезы о наследовании даже простых и очевидных признаков окраски были, мягко говоря, неверными. Путь от гена до признака в большинстве случаев был либо неизвестен вовсе, либо был в общих чертах установлен на мыши и без особого стеснения приписан кошке. Мы тогда знали, что геном кошки содержит ДНК, но на этом наши представления о ее молекулярной генетике и заканчивались. Сорок лет назад было ясно, что кошка приходится родственником льву и тигру, но детали этого родства терялись в тумане времени.

В 1989 г. в той же «Химии и жизни» вышла моя статья под названием «Кошки и гены: десять лет спустя». Из нее читатели узнали, как выглядят под микроскопом кошачьи хромосомы, поняли, как были построены первые генетические карты этого зверя, и убедились в их поразительном сходстве с картами хромосом человека. В конце статьи я пообещал написать продолжение под названием «Кошки и гены: 20 лет спустя». Но обещания не выполнил.

Зато написал книжку, где собрал все достижения кошачьей генетики ХХ в. Она вышла в 1995 г. и с тех пор переиздавалась несчетное количество раз, в том числе и в серии «Шедевры (sic!) научно-популярной литературы». Эта книжка попала в лонг-лист премии «Просветитель» и получила специальный диплом Клуба научных журналистов с правильной формулировкой «За эффектное применение кошек для популяризации науки».

В 2009 г. в журнале «НАУКА из первых рук» вышла моя статья «Кошки и гены: 30 лет спустя». В нулевые годы кошачья генетика переживала бум. Был секвенирован и частично аннотирован кошачий геном, получены первые клонированные и трансгенные кошки. Использование методов сравнительной геномики позволило реконструировать основные этапы эволюции млекопитающих вообще и кошачьих в частности. Выяснилось, что последний общий предок кошки, лошади и летучей мыши жил на свете относительно недавно (около 79 млн лет назад). Обо всем этом я и написал в своей статье. Рунет подхватил и широко разнес новость про общего предка, честно на меня ссылаясь: «У кошки и у лошади – ​общий предок, – ​Павел Бородин». Так я стал общим предком кошки и лошади.

Читайте также:  Реклама про кота мог

С тех пор прошло еще 10 лет. Пришла пора писать «Кошки и гены: 40 лет спустя», что мы и сделали вместе с Любовью Малиновской. Вскоре после появления Любы в нашей лаборатории я попросил ее помочь с подготовкой очередного издания «Кошек и генов». Она это сделала с блеском. Собрала все новые публикации по генетике кошки, исправила все ошибки и опечатки, которые годами переходили из издания в издание. Вскоре она купила себе сначала кота, потом кошку, а позже прошла курсы молодого фелинолога и зарегистрировала собственный котопитомник. Я глубоко убежден, что именно работа с моей книжкой открыла ей скромное обаяние котов и котоведения, хотя она это категорически отрицает. Пусть это остается на ее совести.

Важно, что эту статью мы написали вместе. Это служит залогом, что традиция не прервется, и читатель и пятьдесят, и сто лет спустя каждое десятилетие будет получать очередную статью про кошек и их гены.

Как устроен кошачий геном

«Классические» гены всех эукариот (высших организмов с оформленным клеточным ядром, к которым относятся не только кошки и человек, но и все многоклеточные и множество одноклеточных организмов) устроены примерно одинаково. И функция у них одна – ​производить определенный белок, структура которого закодирована в гене: каждой аминокислоте будущего белка соответствует своя тройка нуклеотидов.

Но сам процесс считывания и реализации генетической информации непрост. В начале каждого гена стоят разнообразные регуляторы (включатели-выключатели) активности, которыми «щелкают» особые белки – ​транскрипционные факторы. Если ген «включился», то запускается процесс транскрипции – ​на ДНК гена собирается комплементарная молекула другой нуклеиновой кислоты, РНК. Затем эта молекула РНК «созревает» в процессе сплайсинга, во время которого она разрезается на фрагменты и вновь сшивается, превращаясь в матричную РНК. Ее назвали так потому, что именно эта молекула служит матрицей, по которой на «фабрике»-рибосоме собирается будущий белок (трансляция).

Все три процесса – ​транскрипция, сплайсинг и трансляция – ​регулируются сложными взаимодействиями ДНК, белков и РНК, которые зависят от типа клеток, стадии клеточного цикла и периода развития организма.

Например, при сплайсинге одни фрагменты РНК (экзоны) сшиваются, а другие (интроны) выбрасываются. Эти последние могут просто деградировать, но могут и использоваться для разных целей, в том числе для регуляции той же транскрипции.

Особую роль в тонкой (громче – ​тише) «настройке» активности генов играют загадочные регуляторные участки ДНК – ​энхансеры. Эти короткие (50–1500 нуклеотидов) последовательности могут располагаться как рядом, так и очень далеко от гена, работу которого они модулируют. Как именно энхансеры действуют, до сих пор неясно. Прелесть их в том, что они тканеспецифичные, т. е. каждый энхансер работает только в определенном месте организма и в определенный момент времени.

На сегодняшний день известно, что геном кошки содержит 19587 генов, кодирующих белки. А также 9438 некодирующих, которые отвечают за производство «некодирующих» РНК, включая транспортные и рибосомные, а также множества разнообразных регуляторных РНК. О работе последних у кошек, к сожалению, практически ничего неизвестно.

Кроме того, в геноме кошки находится 494 псевдогена – ​нефункциональных генных останков, «сломанных» мутациями. Псевдогены могут выглядеть как нормальные гены, но их выдает отсутствие интронов и промоторов – ​стартовых площадок транскрипции. К этой же потенциально «мусорной» группе и относятся следы деятельности геномных паразитов – ​ретровирусов (семейство РНК-содержащих вирусов, заражающих преимущественно позвоночных). Сами ретровирусы и их обломки (ретроэлементы) составляют примерно треть кошачьего генома. Это много, но все же меньше, чем у человека, у которого они занимают до половины всего генома.

Чем холоднее, тем ярче

Мутации бывают разные. Наиболее часты точечные мутации – ​замена одного нуклеотида на другой или утрата либо вставка одного нуклеотида. Как правило, эти мутации возникают из-за ошибок в процессе удвоения (репликации) ДНК или при «исправлении» (репарации) этих и других ошибок. Примерно две трети таких мутаций приводят к изменению состава белка, кодируемого данным геном. К этому типу относятся почти все мутации, выявленные у кошек. Рассмотрим их на примере альбинизма, полного или частичного отсутствия пигментов меланинов.

Окраска меха у кошек, как и у всех остальных млекопитающих, определяется наличием и распределением в волосе двух пигментов: черного (эумеланина) и желтого (феомеланина). Оба пигмента синтезируются из аминокислоты тирозина, а ключевым ферментом синтеза является белок тирозиназа. Этот фермент кодируется геном C (Color). Мутации в этом гене либо вовсе лишают кошку пигментов, либо в той или иной мере нарушают их синтез.

Есть две точечные мутации в гене С (c b и c s ), вызванные заменой одного нуклеотида на другой, которые приводят к синтезу тирозиназы со смещенным температурным оптимумом. Мутантный фермент плохо работает при нормальной температуре тела, чуть лучше – ​при пониженной. А вот утрата одного нуклеотида (мутации c и с 2 ) ведет к образованию так называемого стоп-кодона – ​сигнала о прекращении транскрипции. В результате образуется укороченная мутантная мРНК, на которой синтезируется совсем уже «нерабочий» фермент.

Свои гены кошки, как и люди, наследуют от двух родителей, поэтому каждый ген представлен в геноме как минимум в двух экземплярах. Если любая из названных выше мутаций будет унаследована только от одного из родителей (такие особи называются гетерозиготами), то у кошки будет нормальный окрас. Одного «правильного» гена будет достаточно, чтобы обеспечивать клетки нужным количеством меланина. Но что будет в случае гомозиготы – ​когда кошка получит мутацию от обоих родителей?

В случае мутации c или с 2 кошка вырастет совершенно белой и с голубыми глазами, потому что нормальная тирозиназа у нее полностью отсутствует. Гомозиготы по мутации c b получат бирманскую окраску, а по мутации c s – ​сиамскую. У сиамских ярко окрашенными будут только уши, нос, лапы и кончик хвоста – ​участки тела, где температура снижена. У кошек с бирманской окраской будут окрашены не только эти части, но и само тело, хотя и менее ярко, чем в норме. Из этого мы заключаем, что температурный оптимум тирозиназы у бирманцев несколько выше, чем у сиамцев.

Почему сфинксы лысые, а рексы – ​курчавые

Помимо точечных, у кошек встречаются мутации, вызванные удалением (делеции), удвоением (дупликации) или вставкой (инсерции) уже не отдельных нуклеотидов, а целых фрагментов ДНК. Эти мутации часто возникают за счет сбоев в процессе обмена участками хромосом (кроссинговера), который происходит во время формирования половых клеток.

Несколько мутаций этого типа обнаружены у кошек в генах, которые отвечают за синтез и «созревание» кератинов – ​сложных и прочных фибриллярных белков, входящих в состав волоса. Нарушения в их структуре приводят к безволосости (у сфинксов) или курчавости волос (у разных вариантов рексов).

У девон-рексов курчавость вызывается сложной мутацией в гене KRT71 (Gandolfi et al., 2010). Она включает в себя утрату фрагментов ДНК в двух интронах и две вставки в один из экзонов. В результате вставки дополнительных амикислот структура кератина меняется, что снижает его прочность. Изменения в интронах, казалось бы, не должны влиять на структуру белкового продукта гена, так как в ходе созревания мРНК они вырезаются. Однако такие мутации могут менять активность гена, влияя на процесс сплайсинга и/или стабильность РНК, считанной с гена.

У того же гена KRT71 есть и точечная мутация – ​замена азотистого основания гуанин на аденин, что ведет к появлению стоп-кодона. В результате синтезируется укороченная молекула кератина, что через сложные взаимодействия с другими белками полностью лишает шерсти гомозиготных носителей мутации – ​канадских сфинксов. Удивительно, что многоходовая мутация девон-рексов «всего лишь» сворачивает их шерсть в колечки, а замена одной единственной «буквы» на другую полностью лишает сфинксов шерстяного покрова.

Структура кератина может измениться за счет мутаций не только в самом гене кератина, но и в генах, отвечающих за процесс «созревания» этого белка. Так, своей курчавостью селкирк-рексы обязаны мутации в гене SADRE (Selkirk Autosomal Dominant Rex), которая приводит к утрате пяти аминокислот у кератинового белка – ​продукта гена KRT71 (Gandolfi et al., 2013).

Здесь был ретровирус

У кошки, как и у многих других животных, есть мутации, обусловленные внедрением в ген ретровируса. И приводят они к появлению на теле белых пятен.

Вообще размер белых пятен на теле кошек варьирует в широких пределах: от белых носочков до того, когда вся кошка становится одним сплошным «белым пятном». Долгое время думали, что последний фенотип определяется доминантной белой мутацией W (White). Пятна же всех остальных размеров считали проявлением полудоминантных мутаций в другом гене – ​S (Spotting). Однако в 2014 г. выяснилось, что все варианты белой пятнистости обусловлены разными мутациями в одном и том же гене W (White spotting) (David et al., 2014).

Белковый продукт нормального гена W обеспечивает миграцию различных эмбриональных клеток, производных нервной трубки, к местам их назначения. Среди этих клеток есть и меланоциты, которые вырабатывают пигменты, окрашивающие шерсть и радужку глаза. Мутации в гене W нарушают миграцию и деление предшественников этих клеток, но в разной степени. Особая прелесть этих мутаций в том, что они возникали одна за другой, и одна из другой в результате внедрения ретровируса.

Затем в ходе эволюции «поломался» сам ретроэлемент – ​от него остался лишь один небольшой фрагмент размером около 700 нуклеотидов. Так возникла доминантная белая мутация W. Но носителям такого урезанного ретроэлемента легче не стало. Наоборот. Новая мутация в отличие от предыдущей не просто тормозит миграцию и разрастание производных нервной трубки, а практически полностью их блокирует.

У многих млекопитающих известно множество мутаций белой пятнистости. Примечательно, что многие из них вызваны мутациями в генах, соответствующих гену W кошки. И почти во всех случаях, когда был проведен молекулярный анализ, оказывалось, что эти мутации также вызваны внедрением ретровирусов. При этом каждый вид нес свой ретровирус. Что их туда так влечет – ​кто знает?

Уши, лапы и хвост – ​вот мои документы!

До сих пор мы рассматривали влияние генов на формирование окраски и структуры шерсти и усов. Пути от генов к этим признакам достаточно короткие и прямые.

А как гены контролируют развитие сложных морфологических признаков – ​ушей, лап, хвоста, рисунка шерсти? Здесь пути гораздо более сложные, извилистые и интересные, и контролируются они множеством согласованно работающих генов. Согласование обеспечивают транскрипционные факторы, которые синтезируются в нужное время и связываются в нужном месте с регуляторными областями разных генов, запуская длинные каскады молекулярных взаимодействий. Мутации, которые изменяют развитие этих морфологических признаков, обычно находятся в генах, кодирующих именно эти транскрипционные факторы.

Начнем с хвоста. В свое время ослик Иа-Иа горько сетовал на то, что мало кто «понимает в хвостах. У них нет воображения. Для них хвост – ​это не хвост, а просто добавочная порция спины». На самом деле эти «они», по сути, были правы. Хвостовые и спинные позвонки возникают из хорды эмбриона, и их образование контролируется одним и тем же набором генов.

Ведущую роль во всех этих процессах играет ген Brachyury. Он контролирует синтез транскрипционного фактора, который связывается с регуляторными областями многих генов, вовлеченных в развитие спины, включая шею и хвост. Этот белок начинает синтезироваться на самых ранних стадиях развития эмбриона, определяя ориентацию осей голова-хвост и спина-живот. И мутации гена приводят к довольно серьезным последствиям.

У бесхвостых кошек острова Мэн и их американских родственников нашли четыре разных мутации в гене Brachyury: три точечные замены и одну дупликацию, совмещенную с делецией (Buckingham et al., 2013). Каждая из них ведет к синтезу укороченного белка. У гетерозигот хватает «правильного» белка, чтобы обеспечить нормальное развитие эмбриона, но не его хвоста. Зато гомозиготы гибнут на ранних стадиях беременности, так как работа всей сети генов, зависимых от белка Brachyury, идет вразнос.

Своим хвостом-помпоном японский бобтейл обязан мутации в гене HES 7, который играет важную роль в формировании сегментов тела у позвоночных (Xu et al., 2016). Этот ген способен к саморегуляции: белок, который он кодирует, подавляет активность самого гена HES 7. Когда через некоторое время белок разрушается, его синтез возобновляется. Благодаря такой цикличности и происходит сегментация тела эмбриона, в том числе формирование цепочки позвонков.

У японского бобтейла в этом гене имеется точечная мутация, которая дестабилизирует белок HES 7. Мутантный белок разрушается быстрее, длительность цикла сокращается, и сегменты оказываются очень короткими. Некоторые не успевают сформироваться вовсе или сливаются друг с другом. У обычного кота хвост состоит примерно из 22 позвонков, у бобтейлов – ​из 14–21. Длина хвоста может варьировать, и у гомозигот он самый короткий.

Как леопард получил свои пятна?

Мы подозреваем, хотя и не можем это доказать, что такой же механизм циклической активации-инактивации генов участвует и в формировании периодически повторяющихся узоров (полос, розеток и разводов) на теле кошек, которые объединяются термином «tabby»*. Гены, которые контролируют тот или иной вариант рисунка, хорошо известны. Неизвестно только, как они это делают.

* Есть разные (непримиримые) трактовки, как писать это слово по-русски: табби (примерно 63 млн), тэбби (108 тыс.) или тебби (103 тыс.). Мы всегда писали тэбби и от принципов своих не отступим

Два наиболее распространенных рисунка – ​тигровый (mackerel) и мраморный (blotched). Тигровый окрас унаследован домашней кошкой от предков – ​большинство ее современных диких сородичей имеют тот же рисунок. Контролируется он геном Ta (Tabby), который кодирует трансмембранную аминопептидазу Q (Kaelin et al., 2012). Этот фермент вовлечен в контроль диффузии различных веществ в межклеточном пространстве. Известно три разных мутации, нарушающие структуру этого белка, которые у гомозигот ведут к одному результату – ​развитию мраморной окраски.

Мы знаем, что в темных участках шерсти преобладает черный пигмент, а в светлых – ​желтый. Соотношение этих пигментов в волосе зависит от совместного действия двух пар генов: А (Agouti) и E (Extension) с одной стороны, и Edn3 и Ednrb с другой. Нам также известно, что основа рисунка на теле эмбриона устанавливается за 1–2 недели до рождения. Но мы не знаем, как это происходит. Почему одни группы клеток предназначены для производства темных волос, а другие – ​светлых? Как и почему изменения последовательности аминокислот в трансмембранной аминопептидазе Q приводят к изменению взаимного расположения этих клеток?

Очень может быть, что в формировании рисунка участвует механизм циклической активации-инактивации генов. Почти 70 лет назад великий математик Алан Тьюринг пытался ответить на вопрос, заданный еще раньше великим поэтом Редьярдом Киплингом: «Как леопард получил свои пятна?». Тьюринг предложил простую реакционно-диффузную модель, в рамках которой полосы и пятна образуются автоматически, если цвет каждой клетки зависит от взаимодействия двух диффундирующих активных веществ – ​активатора и ингибитора. Можно (и хочется) думать, что в развитии кошачьего эмбриона есть момент, когда трансмембранная аминопептидаза Q регулирует диффузию и распределение по клеткам подобных соединений, регулирующих процесс производства пигмента.

Взаимодействие активаторов и ингибиторов с тканями-мишенями направляет и развитие кошачьих лап. Порядок будущих пальцев (от большого пальца до мизинца) на конечности зависит от гена SHH (Sonic Hedgehog), кодирующего транскрипционный фактор. Последний участвует в развитии не только конечностей, но и легких, зубов, некоторых структур головного и спинного мозга и т. д. Ген SHH настолько важен, что почти любая его мутация приводит к катастрофическим последствиям вплоть до гибели эмбриона.

Читайте также:  Что такое плутни у кота

Очевидно, что в каждой из структур ген SHH работает немного по-разному, продуцируя столько белка, сколько необходимо в данном конкретном месте. В норме он интенсивно работает в районе будущего мизинца. В середине зарождающейся кисти его активность постепенно снижается, а в районе большого пальца ген не работает совсем. Уровень активности SHH контролирует несколько десятков энхансеров. При мутации энхансера ген начинает активно работать в некоторых клетках будущего большого пальца, так что они начинают считать себя отдельной фалангой и формируют шестой палец. Эта аномалия развития – ​полидактилия, довольно часто наблюдается в некоторых породах кошек (Lettice et al., 2008).

Планы на будущее: дизайнерские коты

Обсудив основные достижения генетики кошек за последнее десятилетие, попробуем заглянуть в будущее и предсказать, о чем будет статья «Кошки и гены: 50 лет спустя».

На сегодняшний день Международная кошачья ассоциация признает 71 породу, Ассоциация любителей кошек – ​44, а Международная фелинологическая ассоциация – ​43. Это не значит, что можно сложить эти цифры и узнать, сколько существует пород кошек. Это означает лишь то, что котоводы не могут договориться друг с другом. Кроме того, вопрос о том, что считать породой, практически неразрешим, столько в нем намешано генетических, зоотехнических и коммерческих проблем и конфликтов интересов. Просто скажем, что пород довольно много. В большинстве своем они созданы недавно на основе отдельных мутаций или комбинации нескольких мутаций на генетическом фоне старых породных групп.

Сейчас мы вплотную подошли к созданию дизайнерских котов – ​получению животных с заранее запланированными свойствами. Весь инструментарий у нас уже есть. Мы знаем их геном, умеем их клонировать, создавать трансгенных животных. Наконец, у нас имеется хороший инструмент для редактирования генов: технология CRISPR/Cas9 и ее модификации позволяют вносить изменения в нужные участки генома. Осталось решить вопрос – ​какие изменения нам нужны?

Нет, давайте начнем с другого конца. Нам точно не нужны изменения, которые принесут страдания «отредактированным» животным. Поэтому никаких карликов, никаких кошачьих мопсов мы делать не будем. Гигантов тоже. Во-первых, потому, что они уже и так есть – ​посмотрите на мейн-кунов! А главное, потому, что размер тела, как и многие другие количественные признаки, контролируется многими генами, каждый из которых вносит в признак ничтожный вклад. Такие признаки мы вполне успешно меняем отбором. Редактировать же множество генов, их контролирующих, крайне накладно и практически бесполезно.

Поэтому мы должны понять, чего хотим, и точно выбрать мишени. А дальше использовать закон гомологических рядов Н. И. Вавилова – ​сходные виды имеют сходную изменчивость – ​и знание геномов кошки и ее родственников. У кошки нужного нам фенотипа нет, зато есть у собаки; ищем собачий ген с нужной мутацией, находим его кошачий гомолог, вносим в него необходимые изменения. Готово.

Итак, мы хотим новых, доселе неведомых у кошек окрасов и форм. Например, котов-шарпеев, или котов-далматинцев, или даже котов-бодибилдеров, вроде бельгийского голубого быка… Заявки принимаются. Нет-нет, это мы пошутили. Мы сами этим заниматься никогда не будем. Мы только обрисовали перспективы редактирования генома кошек. А сейчас вернемся к самым истокам неразрывной связи между кошкой и человеком.

Одомашнивание кошки: где, когда и как

Основные события макроэволюции семейства кошачьих были детально описаны около 20 лет назад. В последнее десятилетие интерес сместился на более близкую историю кошек: историю их одомашнивания и взаимодействия с человеком.

Генетические исследования показали, что все домашние кошки являются потомками одного единственного вида – дикая кошка Felis silvestris (Driscoll et al., 2009). Этот вид широко распространен на территории Старого Света: от Шотландии до Южной Африки и от Испании до Монголии и имеет несколько подвидов.

При этом на уровне ДНК все домашние кошки практически неотличимы от степного кота F. s. lybica – ​подвида, обитающего преимущественно на Ближнем Востоке. Ископаемые останки, принадлежащие степному коту, были найдены в основном в Южной Азии и Южной Европе. Предполагается, что в течение многих тысячелетий, от неолита до настоящего времени, эти кошки обитали в основном в Малой Азии (части территории современной Турции).

Самые ранние археологические свидетельства сосуществования человека и кошки были найдены на Кипре и датируются 7–8 тыс. до н. э. Так как ни на одном из средиземноморских островов, помимо Сицилии, никогда не было аборигенных популяций кошек, то на Кипр кошки могли попасть только вместе с переселенцами с Ближнего Востока. По-видимому, кошки были одомашнены в так называемом Плодородном полумесяце около 10 тыс. лет назад – ​именно в то время на этой легендарной ближневосточной территории, которую часто называют колыбелью цивилизации, люди основали свои первые поселения.

Так человек создал совершенно новую среду обитания для диких животных. Мусорные кучи вокруг селений обеспечивали грызунам бесплатный стол и дом. А за мышами пришли кошки – ​но не все. На первых порах действовал строгий отбор толерантных по отношению к человеку животных, которые могли сосуществовать рядом с ним. Почему F. s. lybica стал единственным подвидом дикой кошки, который был доместицирован? Потому что он оказался в нужном месте и в нужное время. По мере того, как сельское хозяйство распространялось за пределами Плодородного полумесяца, F. s. lybica распространялся вместе с ним, не позволяя местным популяциям диких кошек присоединяться к их кормовым угодьям – ​мусорным кучам.

Кошки завоевывают Землю

Анализ последовательностей ДНК митохондрий (клеточных органелл-«электростанций) из палеонтологических остатков и у современных кошек позволил реконструировать историю их расселения по свету. Для современных кошек характерно пять митотипов – ​основных вариантов митохондриальной ДНК (мДНК) – ​A, B, C, D и E, отличающихся друг от друга по нескольким мутациям (Ottoni et al., 2017).

Почти все (12 из 14) ископаемые остатки дикой кошки, относящиеся к периоду с 8000 до 800 лет до н. э., имеют митотип А. Позже кошки с данным митотипом заселили почти весь Старый Свет. В наше время он является самым распространенным среди домашних кошек.

Большинство обнаруженных мумифицированных останков египетских кошек, живших 7,5—2 тыс. лет назад, имеют митотип С. Кошки играли большую роль в жизни и религии древних египтян. Множество изображений и мумий этих кошек, дошедших до наших дней, и породило идею, что кошки были впервые одомашнены в Египте. Археологические и палеогенетические данные не исключают, что кошка была независимо одомашнена в двух местах. Но более правдоподобной выглядит гипотеза, что центром доместикации был все-таки Плодородный полумесяц, а Египет стал центром котоводства*.

* Странно и обидно, что собаководство, коневодство, овцеводство и другие водства есть, а котоводства™ до сих пор не было, хотя это важная отрасль человеческой деятельности. Теперь будет

Несмотря на запрет на кошачий экспорт, введенный в Египте еще в 1700 г. до н. э., египетские кошки распространились по большей части Старого Света. Они были особенно популярны в Малой Азии: в первом тысячелетии нашей эры частота встречаемости митотипа С на этой территории была в два раза выше, чем митотипа А.

Судя по археологическим и генетическим данным, расселению кошек, вероятно, способствовало распространение домовой мыши и черной крысы по морским путям, начиная уже с железного века. На севере Альп домашние кошки появились вскоре после римских завоеваний. В Средние века было обязательно иметь кошек на корабле, что способствовало их распространению по путям военных действий и торговли. Этим можно объяснить обнаружение кошачьих останков, датированных VII—XI вв., с египетским митотипом С в портовом городе викингов Ральсвике (территория современной Германии).

Кошкам нашли и другие применения, помимо основных – ​борьбы с грызунами и умиротворения хозяев. В Средние века это животное стало непременным ассистентом ведьм, а кошачьи шкурки использовались при пошиве одежды**.

** И, судя по всему, используются до сих пор. ГОСТ 11597–77 (Шкурки кошки домашней меховые выделанные) никто не отменял

Захватывая новые территории, домашние кошки скрещивались с местными дикими, что способствовало появлению новых митотипов – ​D и Е. Современные генетические данные говорят об интенсивной гибридизации одичавших домашних кошек с популяциями диких европейских кошек, что ставит последних под угрозу исчезновения.

Согласно археологическим данным, в Сибирь домашние кошки проникли с русскими переселенцами. Поэтому все легенды о древних сибирских котах не имеют под собой научных оснований.

Реконструировать пути миграции кошек позволил анализ географического распределения мраморного окраса среди бродячих кошек. Его встречаемость выше в Великобритании и Иране и убывает по мере удаления от этих стран. Поскольку Британия долго правила морями, мраморных кошек до сих пор много в портовых городах вообще и в ее колониях в особенности.

Анализ древней, теперь уже ядерной, ДНК у ископаемых протодомашних кошек позволил впрямую проверить эти реконструкции. Он подтвердил, что мраморный окрас возник довольно поздно. Самая древняя мутантная последовательность гена Tabby обнаружена у ископаемых кошек из Южной Азии времен Османской империи (XIV—XV вв.). Позже частота ее встречаемости увеличилась, и она распространилась по Европе и Африке. В XVIII в. мраморный окрас стал достаточно распространенным, а уже в следующем столетии он начал использоваться для создания пород.

Геногеография в эпоху машинного обучения

В прошлом веке самой процветающей отраслью генетики кошек была «геногеография», по числу научных публикаций опережавшая все остальные отрасли, вместе взятые. Энтузиасты ездили по миру, считали кошек разных окрасов, составляли карты, вычисляли индексы сходства и строили красивые модели. В новом веке этот вид занятий сошел на нет. В большинстве крупных городов подсчитали по сотне кошек, основные пенки сняли, осталось добирать мелочи. Значит ли это, что геногеография умерла? Вовсе нет. Мы видим две столбовые дороги, по которым она может пойти.

С удешевлением современных методов генотипирования начинают развиваться и финансироваться проекты молекулярной геногеографии. Сравнение в разных точках мира генетического разнообразия бродячих кошек, с одной стороны, и местного и пришлого человеческого населения – ​с другой, позволит лучше понять эволюцию взаимоотношений двух уникальных видов. Как пророчески мог бы написать Дарвин, «свет будет пролит на переселения человека и кошки и их общую историю».

Второй путь подразумевает использование соцсетей и гражданской науки для решения геногеографических проблем. Что люди постят больше всего на свете? Верно, фото котиков. Все соцсети просто завалены котиками. Как утилизировать это богатство? Правильно, создать API, который станет сетью для вылавливания этих котиков из Сети. И такой интерфейс уже создан и занимается созданием всемирной карты фотографий кошек, доступной по адресу https://iknowwhereyourcatlives.com/. Там вы можете увидеть адреса и фото всех кошек, которые засветились в сетях с геотегами.

Следующий шаг, который предстоит сделать, создать нейросеть для определения фенотипа запощщеных котов. Это не такая простая задача, как кажется. Да, ГуглФото может различать лица людей в фас и в профиль, и даже в широких возрастных пределах. Он прекрасно отличает кошек от людей. Наверное, можно научить его узнавать и кошачьи морды: это Васька, а это Жан-Жак. Но вот с окрасами и текстурами шерсти пока плохо. Знакомые программисты не берутся научить сеть надежно отличать голубого кота от рыжего. Или мы знакомы не с теми программистами? Но мы абсолютно уверены, что со временем эта задача будет решена, и мы получим геногеографические карты нового поколения.

Дарвин, завершая свое «Происхождение видов», писал: «Мы смутно предвидим глубокий переворот в области естественной истории». Завершая эту статью, мы смутно предвидим гигантский прогресс во всех областях генетики, который обязательно затронет и генетику кошки.

Будут созданы новые чудесные породы кошек. Появятся новые методы генетического и геномного редактирования. Будет раскрыта, наконец, тайна мраморной окраски. Мы поймем, как и насколько гены контролируют развитие, как они взаимодействуют друг с другом, обеспечивая развитие наших котов, таких разных, прекрасных и удивительных.

Люди научатся реконструировать геномы, а по ним и облик, и даже особенности поведения вымерших животных. Мы узнаем, мурлыкал ли саблезубый тигр и как он относился к валерьянке.

Нам будет, о чем написать в статье «Кошки и гены: пятьдесят лет спустя».

Buckingham K. J., McMillin M. J., Brassil M. M. et al. Multiple Mutant T Alleles Cause Haploinsufficiency of Brachyury and Short Tails in Manx Cats // Mammalian Genome. 2013. V. 24. P. 400–408.

David V. A., Marilyn Menotti-raymond, Wallace A. C. et al. Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White Spotting in Domestic Cats // G3-Genes Genomes Genetics. 2014. V. 4. P. 1881–1891.

Driscoll C. A., Juliet Clutton-Brock, Kitchener A. C. et al. The Taming of the Cat // Scientific American. 2009. V. 300. P. 68–75.

Gandolfi B., Alhaddad H., Joslin S. E. K. et al. A Splice Variant in KRT71 Is Associated with Curly Coat Phenotype of Selkirk Rex Cats // Scientific Reports. 2013. V. 3. P. 2000.

Gandolfi B., Outerbridge C. A., Beresford L. G. et al. The Naked Truth: Sphynx and Devon Rex Cat Breed Mutations in KRT71 // Mammalian Genome. 2010. V. 21. P. 509–515.

Kaelin C. B., Xu X., Hong L. Z. et al. Specifying and Sustaining Pigmentation Patterns in Domestic and Wild Cats // Science. 2012. V. 337. P. 1536–1541.

Lettice L. A., Hill A. E., Devenney P. S. et al. Point Mutations in a Distant Sonic Hedgehog Cis-Regulator Generate a Variable Regulatory Output Responsible for Preaxial Polydactyly // Human Molecular Genetics. 2008. V. 17. N. 1. P. 978–985.

Mosher D. S., Quignon P., Bustamante C. D. et al. A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs // PLOS Genet. 2007. V. 3. P. 1–8.

Olsson M., Meadows J. R. S., Truvé K. et al. A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs // PLoS Genetics. 2011. V. 7. N. 3.

Ottoni C., Neer W. V., Geigl E. et al. The Palaeogenetics of Cat Dispersal in the Ancient World // Nature Ecology & Evolution. 2017. V. 1. N. 139.

Xu X., Sun X., Hu X. et al. Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats // Scientific Reports. 2016. V. 6. N. 31583.

Источник

Кошки видят будущее?

Во время второй мировой войны радарные установки на южном по­бережье Англии контролировали воздушное пространство Франции для предупреждения налетов наци­стских бомбардировщиков, а тем временем акустические посты и опытные «слухачи» зондировали небеса в поисках признаков и зву­ков, означающих, что готовится налет с противной стороны. Однако многие жители быстро об­наружили, что гораздо более на­дежная и чувствительная система раннего предупреждения опасности лежит, свернувшись клубком, у их теплого камина.

Кошки, как вскоре выяснилось, обладают сверхъестественной спо­собностью предчувствовать, когда с неба готова обрушиться смерть. Многие из них начинали не только обнаруживать признаки беспокой­ства еще задолго до воя сирен, но, казалось, знали, какая именно семья в опасности. У кошек шерсть вставала дыбом, они издавали ши­пящие звуки, сердитые, раздра­женные вопли, а некоторые прямиком неслись в ближайшее бомбоубежище.

Читайте также:  Как можно назвать кота по японски

Во время войны эта способность предсказывать будущее оказалось настолько жизненно ценной, что была учреждена специальная ме­даль с выгравированными на ней словами «Мы тоже служим родине». Медаль вручалась кошкам, чьи дей­ствия помогли спасти человеческие жизни. К сожалению, мы не располагаем материалами о поведе­нии кошек во время бомбежек на­ших городов во время Великой Оте­чественной войны. Будем рады пол­учить воспоминания очевидцев.

Черно-белая кошка по кличке Сэлли, жившая поблизости от лон­донских доков, разработала слож­ную систему оповещения, после ко­торой ее хозяин и соседи мчались в бомбоубежище до того, как начина­ли падать бомбы. Чувствуя, что на­лет близок, Сэлли бежала к стойке в холле, где висел противогаз, и на­чинала настойчиво колотить его передними лапами, после чего возвращалась к своей хозяйке и принималась ее царапать. Затем она мчалась во двор и начинала царапаться в дверь бомбоубежища. Однажды, когда хозяйка вошла в убежище, Сэлли перемахнула через изгородь, забежала во двор к соседям и начала громко мяукать, привлекая их внимание. Только когда все трое оказались в бомбоу­бежище, Сэлли расслабилась, свернулась клубочком и мирно за­снула.

Кошки-мамы использовали свои провидческие способности, чтобы обеспечить безопасность котят. Женщина, которая годы войны провела в Плимуте, рассказала, как очень задолго до воя сирен ее кошка осторожно брала каждого котенка и по очереди переносила из корзинки в большую комнату, под прикрытие массивного потолка.

Еще одна впечатляющая история пришла из Портсмута, также крупной мишени люфтваффе. Од­нажды, уйдя на работу, хозяева закрыли в доме кошку и ее котят. Чувствуя неминуемую опасность, кошка отчаянно носилась в поисках выхода и наконец обнаружила пол­узакрытое окно в спальне. Прыгать в сад было высоко, кроме того, по­близости не оказалось ни водосточ­ной трубы, ни дерева, которые мож­но было бы использовать в качестве лестницы. Тогда настойчивая кош­ка заметила, что телефонный ка­бель, подходящий к дому, проходит довольно близко к окну, и эта тон­кая проволока стала ее дорогой жизни; Вытащив котят из корзины, находившейся на кухне, она по од­ному перенесла их наверх, а затем на подоконник. Потом она ловко перебралась на кабель и, балан­сируя на нем с мастерством циркового канатоходца, крепко придерживая каждого котенка за загривок, достигала телеграфного столба. С него она спускалась в сад и укладывала котят на мешковину в сарае. Завершая операцию по спа­сению, она в последний раз вернулась в дом и вынесла из него самого маленького котенка. Вскоре после этого рядом с домом упала бомба, жилище оказалось сильно повреждено взрывом. Кухня, в ко­торой жили кошка и ее котята, была засыпана осколками стекол и кус­ками обвалившейся штукатурки. Если бы кошка каким-то образом не почувствовала опасности, несом­ненно, что она и ее котята получили бы серьезные, если не сказать смертельные ранения.

Впрочем, необходимо признать, что далеко не все кошки использо­вали свои способности столь бла­городным образом.

Одна семья в Суссексе была чрезвычайно изумлена, когда их кот Тимоти отказался следовать за ними в убежище после того, как сирены предупредили о масси­рованном воздушном налете. Одна­ко когда прозвучал сигнал отбоя, причина его отсутствия стала по­нятной. Кот, обычно сидевший на диете из дешевой рыбы, обнаружил, что семья, торопясь в убежище, ос­тавила на столе четыре нетронутых обеда. Возможно, Тимоти наперед знал, что ни он сам, ни дом не по­двергнутся никакой опасности, по­скольку, презрев убежище, он ос­тался в доме и предался чревоуго­дию!

Эти военные истории являются драматической иллюстрацией спо­собности кошек предсказывать бу­дущее и предвидеть опасность, причем ни один из способов не под­дается сколь-нибудь рациональ­ному объяснению. Однако на самом деле существуют достаточно убеди­тельные теории для объяснения многих, если не всех, их способно­стей к предвидению. Впрочем, ни одна из них не делает кошку менее выдающимся существом или менее полезным человеку помощником. Потому что, как мы уже убедились, кошка часто использует свои сверхъестественные провидческие способности для спасения человече­ской жизни. Иногда они предвидят событие задолго до его наступле­ния, будь то природный катаклизм или серьезный инцидент. Однако, чаще всего их предвидения стано­вятся более «земными» и касаются более тривиальных событий, таких, как, например, смена погоды или прибытие неожиданного гостя. В са­мом деле, если вы знаете, чего ждать, и способны распознать изме­нения в поведении кошки, которые можно было бы рассматривать как провидческие, вы сможете исполь­зовать вашу кошку как волшебный хрустальный шар и, возможно, предотвратить некоторые неприятности, надвигающиеся на вашу семью.

Источник

Удивительные факты о кошках
Ольга Флорес, 2020

Кошки считаются самыми популярными домашними животными. Они стали спутниками человека более 10000 лет назад. Сегодня эти чудесные, милые зверушки дарят нам радость, поднимают настроение и даже могут лечить. Но сколько еще загадок скрывают наши хвостатые питомцы! Например, не многие опекуны знают, что их любимый кот – хищник. Почему кошки любят больше наших друзей, как выглядит окружающий мир глазами кошки, какие запахи они ненавидят, могут ли предсказывать будущее и на самом ли деле кошки видят духов? Как думает кот? Может ли он узнать себя в зеркале? Ответы на эти и многие другие вопросы можно найти в этой книге.

Оглавление

  • Белые лапы у кошки – вы когда-нибудь задумывались, почему они так распространены?
  • Почему кошки едят спиной к стене?
  • Какие цвета видят кошки?
  • 5 причин, почему кошки так любят ухаживать за своей шерсткой
  • Кошки вызывают аллергию, чтобы … защищаться?
  • Почему кошка любит смотреть в окно?
  • Почему мех кошка электризуется?
  • Какой характер будет у вашей кошки?
  • Могут ли кошки предсказывать будущее?
  • Бесшумная походка – как кот это делает?
  • Почему зимой кошки едят больше?
  • Выражение лица кошки раскроет правду о ее здоровье
  • Почему кошка любит валяться в земле?
  • Почему черные кошки со временем рыжеют?
  • Почему кошки хотя бы раз переносят детенышей в новое логово?
  • Какие запахи любят кошки?
  • Кошки знают, когда мы собираемся уезжать?
  • Почему кошка выливает воду из чашки?
  • Почему моя кошка больше любит моего парня, чем меня?!
  • Почему кошка, глядя на что-то, смешно поворачивает голову набок?
  • Сила кошачьего разума
  • Почему кошка пьет воду из стакана?
  • Влияет ли погода на настроение кошки?

Приведённый ознакомительный фрагмент книги Удивительные факты о кошках предоставлен нашим книжным партнёром — компанией ЛитРес.

Могут ли кошки предсказывать будущее?

Многие говорят, что кошки существуют на границе между реальным миром и магией. Более того, есть те, кто считает, что они могут предсказывать будущее. Верно или нет, давайте посмотрим на некоторые конкретные странные случаи.

Кота, который предсказал смерть звали Оскар. Он был жителем американского дома престарелых и предсказал гибель, по меньшей мере, 50-ти человек. Обычно Оскар был не очень общительным и проводил дни, блуждая по коридорам и комнатам заведения. За одним исключением. Всякий раз, когда один из жителей приближался к концу своих дней, кот входил в его комнату, укладывался на постель человека и не давал себя прогнать. Если он не мог войти в комнату, то поцарапался в запертую дверь. Каким — то образом Оскар чувствовал приближение смерти пациента. Жители смирились с необычными способностями пушистого ясновидца, смирились с неизбежностью приближения конца, а сам кот стал пользоваться большим уважением со стороны, как обитателей дома престарелых, так и медицинского персонала.

Необыкновенным способностям Оскара пытались дать логическое объяснение, будто он способен ощущать определенные биохимические вещества, высвобождаемые из умирающих клеток. Пять других кошек живут в том же доме престарелых. Никто из них не может сделать то, что делает Оскар.

Многие люди описывают случаи, когда кошка предсказывала собственную смерть или смерть близкого человека — как члена семьи, так и животного.

Умирающие кошки часто ищут изолированные места, чтобы остаться со смертью один на один. Есть также те, кто, ожидая, что это время “Х” настало, прощается со своими опекунами, обходит всю квартиру.

По крайней мере, несколько случаев известны и хорошо задокументированы, когда кошка выполняла роль конкретного живого сейсмографа. Свидетели рассказали, как за несколько дней до землетрясения кошки становились беспокойными, дрожали без причины и как раз перед катастрофой — убегали в панике из дома.

Когда вулканическая лава накрыла Помпеи, спустя столетия оказалось, что в руинах города не было найдено ни одного скелета кошки. Все они бежали из города еще до начала катастрофы.

В 1902 году на Мартинике вспыхнул вулкан, погибли десятки тысяч людей и только один кот.

В 2004 году у побережья Индонезии и Тайланда все кошки сбежали еще до цунами. Похожая ситуация наблюдалась во время землетрясений в Лос-Анджелесе.

Возможное объяснение — кошки могут ощутить с помощью усов и чувствительных волос на подушечках лап малейшие колебания земной коры и изменения ее магнитного поля.

Крестьяне, живущие на склонах Этны, доверяли кошачьей интуиции. Они держали кошек в своих домах не для того, чтобы ловить мышей, а чтобы предупредить их об извержении вулкана.

Возможно, вы знаете из собственных наблюдений — когда приближаются морозы, кошка становится ленивой, дольше спит, свернувшись калачиком, не желая двигаться.

Прежде чем температура поднимется выше нуля градусов по Цельсию, кошка становится активной. Она все больше хочет двигаться, играть, требовать, чтобы ее выпустили на балкон или на улицу. Начинается весенняя смена настроения.

Источник



БудущееКакими будут домашние животные будущего

Как развитие науки и технологий может повлиять на наших питомцев

В то время как технологии идут семимильным шагами вперёд, стоит задуматься о том, какое влияние они окажут на наших питомцев. Возможно, человечество вовсе откажется от концепции приручения животных, а привычные котики и собачки будут заменены роботами наподобие Aibo или Pleo. Может быть, в будущем, благодаря генетическим изменениям, мы сможем завести дома мини-носорога или даже аквариумного кита? В этом материале мы решили разобраться с возможными сценариями развития будущего наших домашних животных.

Точно неизвестно, сколько тысяч лет назад человек решил укротить животное и превратить его в своего друга и помощника. Поначалу это был довольно непростой альянс, в котором не было места для нежных ласк и взаимного обожания. Чтобы представить, во что он вылился сейчас, достаточно посмотреть на индустрию товаров для домашних животных, которая только в США оценивается в несколько миллиардов долларов.

Технологии заменили утилитарную функцию наших питомцев — нечасто встретишь кота, который помогает избавиться от грызунов, или собаку, охраняющую дом или охотящуюся на уток. Вместо этого они стали полноценными членами семей, а главной причиной, по которой люди заводят домашних животных, — это общение, которое они дарят человеку. Современные технологии позволили также создать максимально комфортную среду для питомцев. Но какое место они будут занимать в будущем? Большинство экспертов сходятся во мнении, что кибернетические питомцы 2.0 вряд ли выместят живых созданий. Собаки и кошки были одомашнены не по своей воле, и одно можно сказать наверняка — они никуда не денутся.

Почему люди любят
своих питомцев?

Игра с домашним животным провоцирует выброс гормона окситоцина, который, по предположениям учёных, вызывает более благожелательное расположение к окружающим. Он же участвует в формировании романтических чувств и отношений мать — ребёнок. Общение с животными снижает уровень стресса и даже содержание холестерина, нормализует кровяное давление.

По статистике 62 % американских семей имеют не менее одного животного (по сравнению с 56 % в 1988 году). 37,2 % семей владеют собаками и 32,4 % — кошками. В России зверей дома держат 76 % жителей: чаще всего это, разумеется, кошка (37 %) и собака (30 %). Основываясь на текущих тенденциях, повсеместная любовь и привязанность к братьям нашим меньшим в будущем будет только расти.

Союз человека и питомца является одним из фундаментальных для человеческого бытия. Один из самых очевидных вариантов его эволюции — появление всё большего количества роботов, которые менее прихотливы, чем наши Васьки, Марсики и Тишки. Уже сейчас есть масса впечатляющих примеров.

Питомцы-роботы

Один из них — робот-динозавр Pleo, созданный американской компанией Ugobe. Он имитирует своим видом детёныша Камаразавра недельного возраста. Разработчиком Pleo является Калеб Чанг, один из создателей интерактивной игрушки Furby. По заявлениям представителей Ugobe, каждый Pleo «учится», основываясь на событиях, происходящих в окружающем его мире. Сложный «искусственный интеллект» даёт возможность формировать уникальную индивидуальность каждому отдельно взятому роботу Pleo.

Другой хороший пример — японский робот-белёк Паро. Интерактивное устройство, имитирующее детёныша тюленя, реагирует на действия людей: если его погладить или похвалить, он выразит своё удовольствие, если ударить — испугается. Благодаря пяти датчикам, реагирующим на температуру, прикосновения, свет, голос и положение окружающих объектов, белёк ведёт себя как живой. Выбор именно этого животного в качестве прототипа игрушки неслучаен — белёк по праву может считаться одним из самых умилительных существ.

В отличие от Плео, Паро вовсе не простая игрушка — робот помогает лечить возрастных пациентов. Общение с ним помогает снизить давление, риск инфаркта, инсульта и диабета, повысить общую сопротивляемость организма и улучшить настроение, что особенно важно для пожилых больных. В отличие от живых кошек и собак, Паро не переносит бактерии, не вызывает аллергии, не может никого поцарапать или укусить. Желание потискать игрушку, прижать её к себе помогает вернуть интерес к жизни и вызвать положительные чувства у пожилых людей, подолгу пребывающих в больницах.

Компания Falkor Systems разрабатывает интеллектуальные беспилотники, которые способны следовать за человеком, фотографировать и отправлять снимки в соцсети. В некотором смысле прототип Pet AR.Drone, использующий алгоритмы искусственного интеллекта и автоматически отслеживающий своего хозяина с безопасного расстояния, можно считать полноценным питомцем. Его создатель Самир Парех заявляет, что беспилотники могут быть использованы для личной безопасности: например, когда вы идёте по тёмному переулку и вас пытаются ограбить, дрон сможет вызвать полицию. Парех также говорит, что однажды каждый человек будет иметь свой ​​собственный беспилотник, который будет действовать как личный помощник или питомец.

Будущие поколения интерактивных роботов-питомцев могут обзавестись более реалистичным внешним видом, симуляцией тепла тела и более совершенным искусственным интеллектом. Впечатляют уже существующие разработки Boston Dynamics, чьи роботы Legged Squad Support System и CHEETAH двигаются с завораживающей грациозностью и быстротой. В первую очередь они разрабатываются для того, чтобы, например, вынести тело раненого из эпицентра боевых действий по косогору, но несложно представить, как на их базе можно создать милого и игривого робота-ретривера, который будет резвиться с детьми на лужайке. Такой питомец сможет отправиться за хозяином куда угодно: будь то поход в Гималаи или пикник на песчаных барханах в пустыне. Помимо того что подобная робособака поможет донести ваш рюкзак, встроенный в GPS датчик превратит её в отличного проводника, который доведёт до места назначения.

Робот-животное будет иметь массу очевидных преимуществ по сравнению с живыми питомцами. Его не придётся регулярно выгуливать, кормить или убирать за ним. Кроме того, робота можно без проблем взять с собой, например, на борт самолёта (это, кстати, может помочь справиться с аэрофобией, — как говорилось выше, роботы-питомцы снижают уровень стресса).

Как показало исследование, настоящие собаки вполне могут «подружиться» с роботами. Если машина запрограммирована на то, чтобы реагировать на животное, в ответ оно проявляет позитивный интерес. Вероятно, в будущем роботы смогут скрасить одиночество живых питомцев, пока хозяин находится на работе.

Источник